20 research outputs found

    WTA/TLA: A UAV-captured dataset for semantic segmentation of energy infrastructure

    Get PDF
    Automated inspection of energy infrastructure with Unmanned Aerial Vehicles (UAVs) is becoming increasingly important, exhibiting significant advantages over manual inspection, including improved scalability, cost/time effectiveness, and risks reduction. Although recent technological advancements enabled the collection of an abundance of vision data from UAVs’ sensors, significant efforts are still required from experts to interpret manually the collected data and assess the condition of energy infrastructure. Thus, semantic understanding of vision data collected from UAVs during inspection is a critical prerequisite for performing autonomous robotic tasks. However, the lack of labeled data introduces challenges and limitations in evaluating the performance of semantic prediction algorithms. To this end, we release two novel semantic datasets (WTA and TLA) of aerial images captured from power transmission networks and wind turbine farms, collected during real inspection scenarios with UAVs. We also propose modifications to existing state-of-the-art semantic segmentation CNNs to achieve improved trade-off between accuracy and computational complexity. Qualitative and quantitative experiments demonstrate both the challenging properties of the provided dataset and the effectiveness of the proposed networks in this domain.The dataset is available at: https://github.com/gzamps/wta_tla_dataset

    Colias IV: The Affordable Micro Robot Platform with Bio-inspired Vision

    Get PDF
    Vision is one of the most important sensing modalities for robots and has been realized on mostly large platforms. However for micro robots which are commonly utilized in swarm robotic studies, the visual ability is seldom applied or with only limited functions and resolution, due to the challenging requirements on the computation power and high data volume to deal with. This research has proposed the low-cost micro ground robot Colias IV, which is particularly designed to meet the requirements to allow embedded vision based tasks onboard, such as bio-inspired collision detection neural networks. Numerous of successful approaches have demonstrated that the proposed micro robot Colias IV to be a feasible platform for introducing visual based algorithms into swarm robotics

    Dynamic Bayesian network for semantic place classification in mobile robotics

    Get PDF
    In this paper, the problem of semantic place categorization in mobile robotics is addressed by considering a time-based probabilistic approach called dynamic Bayesian mixture model (DBMM), which is an improved variation of the dynamic Bayesian network. More specifically, multi-class semantic classification is performed by a DBMM composed of a mixture of heterogeneous base classifiers, using geometrical features computed from 2D laserscanner data, where the sensor is mounted on-board a moving robot operating indoors. Besides its capability to combine different probabilistic classifiers, the DBMM approach also incorporates time-based (dynamic) inferences in the form of previous class-conditional probabilities and priors. Extensive experiments were carried out on publicly available benchmark datasets, highlighting the influence of the number of time-slices and the effect of additive smoothing on the classification performance of the proposed approach. Reported results, under different scenarios and conditions, show the effectiveness and competitive performance of the DBMM

    A conceptual approach to enhance the well-being of elderly people

    Get PDF
    The number of elderly people living alone is increasing. Consequently, a lot of research works have been addressing this issue in order to propose solutions that can enhance the quality of life of elderly people. Most of them have been concerned in dealing with objective issues such as forgetfulness or detecting falls. In this paper, we propose a conceptual approach of a system that intends to enhance the daily sense of user’s well-being. For that, our proposal consists in a system that works as a social network and a smartwatch application that works unobtrusively and collects the user’s physiological data. In addition, we debate how important features such as to detect user’s affective states and to potentiate user’s memory could be implemented. Our study shows that there are still some important limitations which affect the success of applications built in the context of elderly care and which are mostly related with accuracy and usability of this kind of system. However, we believe that with our approach we will be able to address some of those limitations and define a system that can enhance the well-being of elderly people and improve their cognitive capabilities.The work presented in this paper has been developed under the EUREKA - ITEA3 Project PHE (PHE-16040), and by National Funds through FCT (Fundação para a Ciência e a Tecnologia) under the projects UID/EEA/00760/2019 and UID/CEC/00319/2019 and by NORTE-01-0247-FEDER-033275 (AIRDOC - “Aplicação móvel Inteligente para suporte individualizado e monitorização da função e sons Respiratórios de Doentes Obstrutivos Crónicos ”) by NORTE 2020 (Programa Operacional Regional do Norte)

    VPR-Bench: An Open-Source Visual Place Recognition Evaluation Framework with Quantifiable Viewpoint and Appearance Change

    Get PDF
    Visual place recognition (VPR) is the process of recognising a previously visited place using visual information, often under varying appearance conditions and viewpoint changes and with computational constraints. VPR is related to the concepts of localisation, loop closure, image retrieval and is a critical component of many autonomous navigation systems ranging from autonomous vehicles to drones and computer vision systems. While the concept of place recognition has been around for many years, VPR research has grown rapidly as a field over the past decade due to improving camera hardware and its potential for deep learning-based techniques, and has become a widely studied topic in both the computer vision and robotics communities. This growth however has led to fragmentation and a lack of standardisation in the field, especially concerning performance evaluation. Moreover, the notion of viewpoint and illumination invariance of VPR techniques has largely been assessed qualitatively and hence ambiguously in the past. In this paper, we address these gaps through a new comprehensive open-source framework for assessing the performance of VPR techniques, dubbed “VPR-Bench”. VPR-Bench (Open-sourced at: https://github.com/MubarizZaffar/VPR-Bench) introduces two much-needed capabilities for VPR researchers: firstly, it contains a benchmark of 12 fully-integrated datasets and 10 VPR techniques, and secondly, it integrates a comprehensive variation-quantified dataset for quantifying viewpoint and illumination invariance. We apply and analyse popular evaluation metrics for VPR from both the computer vision and robotics communities, and discuss how these different metrics complement and/or replace each other, depending upon the underlying applications and system requirements. Our analysis reveals that no universal SOTA VPR technique exists, since: (a) state-of-the-art (SOTA) performance is achieved by 8 out of the 10 techniques on at least one dataset, (b) SOTA technique in one community does not necessarily yield SOTA performance in the other given the differences in datasets and metrics. Furthermore, we identify key open challenges since: (c) all 10 techniques suffer greatly in perceptually-aliased and less-structured environments, (d) all techniques suffer from viewpoint variance where lateral change has less effect than 3D change, and (e) directional illumination change has more adverse effects on matching confidence than uniform illumination change. We also present detailed meta-analyses regarding the roles of varying ground-truths, platforms, application requirements and technique parameters. Finally, VPR-Bench provides a unified implementation to deploy these VPR techniques, metrics and datasets, and is extensible through templates

    Understanding of human behavior with a robotic agent through daily activity analysis

    No full text
    Personal assistive robots to be realized in the near future should have the ability to seamlessly coexist with humans in unconstrained environments, with the robot’s capability to understand and interpret the human behavior during human–robot cohabitation significantly contributing towards this end. Still, the understanding of human behavior through a robot is a challenging task as it necessitates a comprehensive representation of the high-level structure of the human’s behavior from the robot’s low-level sensory input. The paper at hand tackles this problem by demonstrating a robotic agent capable of apprehending human daily activities through a method, the Interaction Unit analysis, that enables activities’ decomposition into a sequence of units, each one associated with a behavioral factor. The modelling of human behavior is addressed with a Dynamic Bayesian Network that operates on top of the Interaction Unit, offering quantification of the behavioral factors and the formulation of the human’s behavioral model. In addition, light-weight human action and object manipulation monitoring strategies have been developed, based on RGB-D and laser sensors, tailored for onboard robot operation. As a proof of concept, we used our robot to evaluate the ability of the method to differentiate among the examined human activities, as well as to assess the capability of behavior modeling of people with Mild Cognitive Impairment. Moreover, we deployed our robot in 12 real house environments with real users, showcasing the behavior understanding ability of our method in unconstrained realistic environments. The evaluation process revealed promising performance and demonstrated that human behavior can be automatically modeled through Interaction Unit analysis, directly from robotic agents
    corecore